

ICMR-CDSCO/IVD/TB/PROTOCOLS/2025

Indian Council of Medical Research and Central Drugs Standard Control Organization

Department of Health Research and Drugs Controller General of India

Ministry of Health and Family Welfare

Government of India

Document No.: ICMR-CDSCO/IVD/TB/PROTOCOLS/2025

Subject: Inviting comments on standard IVD evaluation protocols drafted by ICMR and CDSCO

Licensure of In-Vitro Diagnostics (IVDs) under Medical Devices Rules 2017 requires a detailed evaluation protocol for the performance evaluation of IVDs to evaluate their quality and performance. To facilitate this process, the Indian Council of Medical Research (ICMR) and CDSCO have come together to draft standard evaluation protocols for use by IVD manufacturers testing labs in India. Currently, the following protocols for Tuberculosis have been developed by ICMR and CDSCO:

1. Analytical Performance Evaluation of In-Vitro Diagnostics for Pulmonary Tuberculosis
2. Clinical Performance Evaluation of In-Vitro Diagnostics for Pulmonary Tuberculosis
3. Clinical Performance Evaluation of In-Vitro Diagnostics for Pulmonary Drug Resistant Tuberculosis

These protocols are now being placed in the public domain for comments from relevant stakeholders. This window of opportunity will close on **7th September 2025**, and, once finalized, there will be minimal scope for change in these documents. Therefore, all interested stakeholders are requested to provide their comments before **7th September 2025**, at ivdevaluation@gmail.com as per the enclosed format. Once the public consultation period concludes, all comments will be reviewed and considered in finalizing the draft protocols before final clearance by ICMR and CDSCO.

Dated: 27th August 2025

Place: New Delhi

STANDARD IVD PERFORMANCE EVALUATION PROTOCOL

STAKEHOLDER FEEDBACK FORM

S.N.	Name of the Protocol	Document No.	Page No.	Line No.	Current Text	Proposed Text	Explanation/Reference

Name: _____

Designation and Affiliation: _____

1

2

3

4

5

ICMR-CDSCO STANDARD PERFORMANCE EVALUATION PROTOCOLS

6 ANALYTICAL PERFORMANCE EVALUATION OF
7 IN-VITRO DIAGNOSTICS FOR PULMONARY
8 TUBERCULOSIS

9 ICMR-CDSCO/IVD/TB/PROTOCOLS/1/2025

10
11

DIVISION OF COMMUNICABLE DISEASES, ICMR
IN VITRO DIAGNOSTICS DIVISION, CDSO

AUGUST, 2025

India

12
13
14
15

LIST OF CONTRIBUTORS

A. Working Group:

1. Dr Sivakumar, Scientist E and Head, Department of Bacteriology, ICMR-NIRT, Chennai
2. Dr Madhumathi J, Scientist D, Division of Communicable Diseases (CD), ICMR, New Delhi

B. Review Committee:

1. Dr Amita Jain, Professor and Head, Department of Microbiology, KGMU
2. Dr RM Pandey, ICMR- Dr A.S. Paintal Distinguished Scientist Chair
3. Dr. Camilla Rodrigues, Senior Consultant, P.D. Hinduja Hospital, Mumbai
4. Dr Gita Nataraj, Professor Emeritus, Microbiology, Seth GS Medical College and KEM Hospital, Mumbai
5. Dr Ashutosh Aggarwal, Professor and Head, Pulmonary Medicine, PGIMER
6. Dr Venkataraghava Mohan, Professor & Head, Dept. of Community Health and Development, CMC Vellore
7. Mr. Pramod Meshram, Deputy Drugs Controller, Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India
8. Dr. Sella Senthil, Assistant Drugs Controller, Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India
9. Dr. Nivedita Gupta, Scientist-G and Head of the Division of Communicable Diseases, ICMR Headquarters, Department of Health Research, Ministry of Health and Family Welfare, Government of India

42
43
44

49
50
Analytical Performance Evaluation of IVD for Pulmonary Tuberculosis**Table of Contents**

S.No	Content	Page Number
I.	Background	4
II.	Purpose	4
III.	Study Design	4
IV.	Ethical Considerations	4
V.	Blinding of Laboratory Staff	5
VI.	Procedure i. Preparation of Evaluation sites/laboratories ii. Exclusion iii. Reference tests iv. Preparation of samples v. Reference Strains vi. Sample size and sample panel composition vii. Limit of Detection (LOD) Assay viii. Reproducibility ix. Inclusivity and exclusivity x. Cross-contamination/carry-over xi. Resolution of discrepancy	6 6 6 6 7 7 10 13 13 14 14
VII.	Statistical Analysis Plan	15
VIII.	Acceptance Criteria	15
IX.	Publication Rights	16
X.	Important Note	16
XI.	References	17
XII.	Performance Evaluation Report Format	18

51
52 **I. Background**

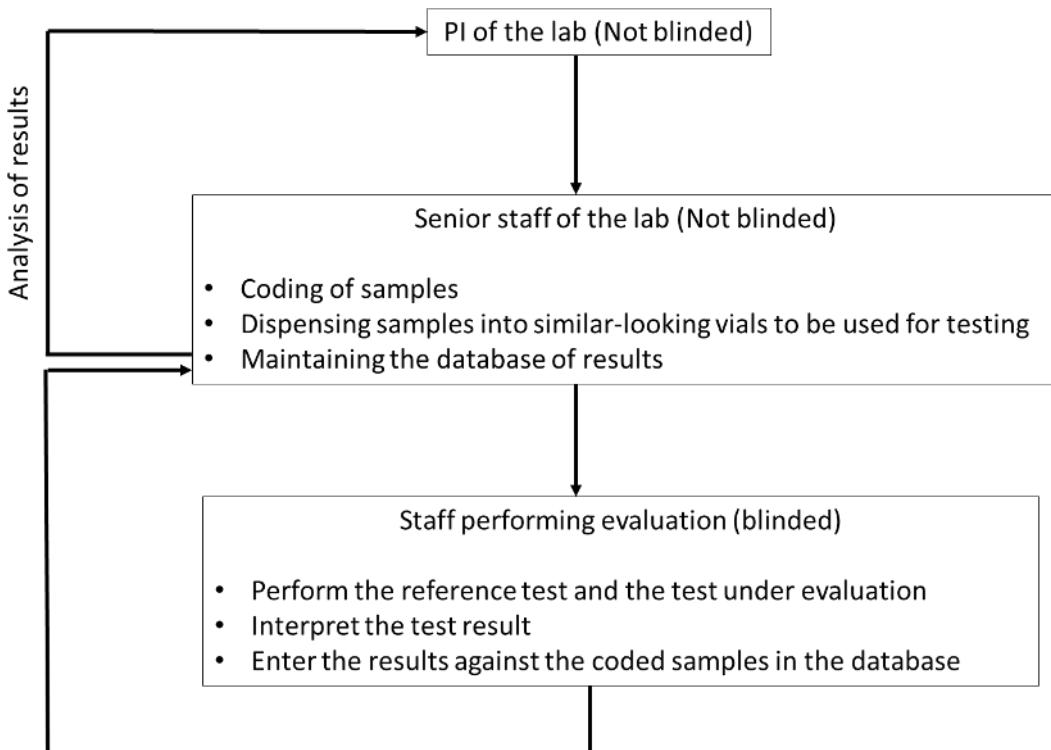
53 CDSCO and ICMR, New Delhi, have aimed at facilitating the availability of Quality-Assured
54 diagnostic kits appropriate for use in India. This protocol gives the methods to be used for
55 evaluating the analytical performance characteristics of the in-vitro diagnostic test in detecting
56 pulmonary tuberculosis and drug-resistant tuberculosis.

57
58 **II. Purpose**

59 To evaluate the performance characteristics of nucleic acid amplification tests (NAAT) for the
60 diagnosis of pulmonary *Mycobacterium tuberculosis* (MTB) using irreversibly de-identified
61 leftover archived or spiked sputum samples.

62
63 **III. Study Design**

64 Analytical validation of IVD using irreversibly de-identified leftover clinical/spiked samples.


65
66 **IV. Ethical Considerations**

- 67 1. Leftover sputum specimens collected for routine diagnostic evaluation from patients who
68 are suspected of having TB shall be used. No additional specimens should be requested.
- 69 2. The probability of harm or discomfort anticipated in the research is nil or not expected.
- 70 3. Performance evaluation activities using irreversibly de-identified leftover clinical
71 samples are exempt from ethics approval as per ICMR's Guidance on Ethical
72 Requirements for Laboratory Validation Testing, 2024.
- 73 4. Investigators are required to submit a self-declaration form, as outlined in the ICMR
74 guidelines, to the institutional authorities and ethics committee for information.
- 75 5. The protection of privacy of participants should be ensured by using de-identified
76 samples and encrypting the patient identifiers.
- 77 6. Respect for the dignity of participants shall be prioritized.

78
79

82 **V. Blinding of Laboratory Staff**

83 To ensure the rigor of the evaluation process, laboratory staff performing the evaluation should
84 be blinded to the status of the clinical samples. The PI of the evaluation exercise should remain
85 unblinded, i.e., privy to the status of the samples. Another senior laboratory staff member
86 selected by the PI may remain unblinded and carry out coding of samples and dispensing them
87 into similar-looking vials to be used for testing, and maintain the database of results. Staff
88 performing the reference test and the test under evaluation, interpretation of the test result, and
89 entering the results against the coded samples in the database, should remain blinded to the status
90 of samples till the completion of evaluation. The data should be analyzed only by the PI of the
evaluating lab. Refer to Fig. 1.

93
94 **Figure 1 Blinding in evaluation exercise**

95
96
97

100
101 **VI. Procedure**

102 **1. Preparation of Evaluation sites/laboratories**

103 A. The laboratory must be approved by the National TB Elimination Program (NTEP).
104 B. Accreditation for at least one Quality management system [accreditation for Testing Lab /
105 Calibration Lab (ISO/IES 17025), Medical Lab (ISO 15189), PT provider ISO/IEC
106 17043 or CDSCO approved Reference laboratory].

107 **2. Exclusion**

108 • Extra-pulmonary samples
109 • Specimens with > 1 freeze-thaw cycle (or according to IFU, if specified)
110 • Any exclusion criteria stated in the product IFU

111 **3. Reference tests**

112 • ***For detection of MTB:*** Mycobacterium Growth Indicator Tubes (MGIT) liquid culture.
113 • ***For MDR-TB:*** MGIT drug sensitivity testing (DST)

114
115 **4. Preparation of samples**

116 • ***For LOD studies - MTBC-negative sputum:*** smear-negative and NAAT-negative
117 sputum should be used for the spiking analytic studies
118 • ***For analytical sensitivity and specificity:*** Well characterized archived samples (sputum
119 or processed sputum); MTB positives, MTB negatives and Non-Mycobacterium
120 tuberculosis (NTM) samples confirmed by liquid MGIT culture
121 • ***For drug sensitivity:*** MTB and NTM clinical isolates thoroughly characterized through
122 MGIT DST and sequencing should be used.
123 • For inclusivity/exclusivity, resistance detection, and cross-contamination, mycobacterial
124 strains should be diluted into 7H9 medium at the required concentrations.
125 • The concentrations (cfu/mL) should be estimated by adjusting the bacterial suspension
126 density to the McFarland standards.

127

128

129 **5. Reference Strains**

130 The National Institute for Biological Standards and Control (NIBSC) internal reference standard for
131 Mycobacterium tuberculosis (H37Rv) DNA for Nucleic Acid Amplification Test (NAAT) based
132 assays (NIBSC code: 20/152) will be used for the LOD assay. It was established as the 1stWHO
133 International Standard for Mycobacterium tuberculosis (H37Rv) DNA for NAAT-based assays in
134 2021. The intended uses of this material are for calibration of secondary or in-house reference
135 materials used in the assays for the molecular detection of M. tuberculosis DNA. It may also be used
136 for assay validation and monitoring the limit of detection of rapid diagnostic tests. This preparation
137 contains an arbitrary unitage of 6.3 log₁₀ (or 2 million) IU per vial.

138

139 **6. Sample size and sample panel composition**

140 With an anticipated sensitivity of 90% and relative precision of 7%, a minimum of 87
141 confirmed MTB positive samples by MGIT culture will be required for testing analytical
142 sensitivity. With an anticipated specificity of 95% with 5% relative precision, the minimum
143 sample size required for analytical specificity is 81 confirmed MTB negative samples by
144 MGIT culture. To rule out NTM detection, with an assumed sensitivity of 90% and relative
145 precision of 10%, around 50 confirmed NTM samples may be included to evaluate the index
146 test kit. Hence, approximately 100 confirmed MTB positives, 100 confirmed MTB negatives
147 and 50 NTM samples will be used for pre-validation studies.

148

149 The proposed evaluation study will be done using Sputum/MTB isolates stored at the biobank
150 facility of the National TB reference laboratories (NRLs) or the pre-validation labs. The
151 stored sputum/MTB isolate/processed sample/DNA samples will be of the following
152 categories and sub-categories.

153 **Category 1:** Positive for MTB by MGIT culture (N = 100)

154 **Category 2:** Negative for MTB by MGIT culture (N = 150)

155 Within the MTB negative group, we propose the following two sub-categories:

156 i. Negative for all Mycobacteria (N = 100)

157 ii. Positive for Non-Tuberculous Mycobacterium (N = 50)

158

159 **Category 3:** If resistance detection has to be carried out, within the MTB positive group, we
160 propose to use the following sub-categories:

161 i. Sensitive to Rifampicin and Isoniazid, individually and combined (N = 100) confirmed
162 by Drug susceptibility testing on MGIT liquid culture.

163 ii. Resistance to both Rifampicin and Isoniazid (N = 100) as detected by Drug susceptibility
164 testing on MGIT liquid culture.

165 iii. Isoniazid mono-resistance (N = 45) as detected by DST on MGIT liquid culture.

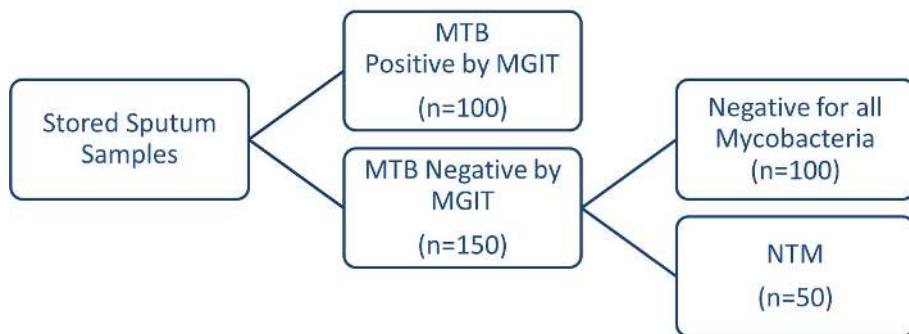
166 iv. Fluroquinolone resistance (N=45) (If applicable for the index test) as confirmed by DST
167 on MGIT liquid culture.

168

169 **Table 1: Sample size calculation with 95% confidence level**

170

Anticipated Sensitivity	Relative Precision	Sample size
90%	5%	171
90%	10%	43
90%	7%	87
95%	5%	81
95%	10%	20
95%	7%	41


171

172

173 Analytical sensitivity and specificity:


174

a)

175

b)

176

177

178

179 **Figure 2. Flowchart for Analytical Validation for detection of; a) MTB detection, b)
180 MDR-TB**

181

182

183

184

185

186

187 **7. Limit of Detection (LOD) Assay**

188 The 95% LOD is defined as the minimum concentration of bacterium, expressed as CFU/ml or
189 genomic DNA copy numbers/mL, in a sample volume that can be detected in 95% of tests.
190 Finalize the LOD at least one concentration with a hit rate above 95% and two concentrations
191 with hit rates between 10% and 90%.LOD should be always done with NIBSC H37Rv (20/152)
192 standard and only reported in IU/ml or CFU/ml

193

194 ***Preparation of samples for LOD***

- 195 1. The volume of sputum required for LOD is based on the IFU (Instruction for use) from the
196 index test manufacturer, which generally varies between 1-2 ml of sputum.
- 197 2. A minimum of 200ml of NAAT negative sputum is required for the full LOD studies for a
198 single index test.
- 199 3. Sputum samples which are negative by Smear and GeneXpert will be stored at -20C and once
200 the required amount is obtained the samples will be pooled and tested for MTB using
201 molecular and phenotypic test to prove no growth of MTB in the pooled samples.
- 202 4. To perform the assay it may take two weeks to one month based on the multiplicities of test
203 suggested in the IFU after the required volume of sputum is collected.

204 ***Spiking of sputum samples***

- 205 1. The spiked sputum will be used *to determine the LOD* of the test kit. About 1.8 ml of negative
206 sputum *specimen will* be spiked with 200 ul of the respective diluted suspension series of *M.*
207 *tuberculosis* H37Rv.
- 208 2. These dilutions will be added to the sputum to get the final concentration (10000, 1000, 100,
209 and 10 IU/ml). Before spiking, the culture for CFU *will be set up* for the different dilutions.
- 210 3. NIBSC reference standard will be reconstituted as directed by NIBSC using 1 mL nuclease
211 free molecular biology grade purified water (MBGPW). From this stock 100 μ L will be
212 diluted $\frac{1}{2}$ to get 10,00,000 IU/ml and serially diluted to give 100000, 10000, 1000 and 100
213 IU/ml with MBGW.
- 214 4. Each dilution of the WHO International Standard, will be tested 24 times. The 24 replicates
215 will be performed over at least three days by at least two users and, for low-throughput
216 instruments, on at least three different instruments, or sets of instruments if applicable (e.g.,

217 DNA preparation and amplification instruments). For low through-put instruments, the
218 number of testing days may be increased.

219 5. Each lot shall comprise different production (or manufacturing, purification, etc.) runs of
220 critical reagents. Inter-lot variation must be evaluated by appropriate statistical means.

221 6. Lowest dilution at which the test detects *M.tb* *will be determined* a LOD, the corresponding
222 CFU will also be counted and reported in terms of CFU/per ml. The LOD will be presented as
223 IU/mL for each dilution.

224 7. Analytical sensitivity shall be estimated by determining the 95% LOD with 95% confidence
225 intervals (e.g., by probit analysis).

226 8. If there are more than four invalid results with the same specimen (i.e. dilution) overall, then
227 the specimen will be retested to get at least 20 valid results for each dilution. For tests that
228 include a claim for drug resistance testing, at least 20 valid results (i.e., sensitive or resistant)
229 for each of the claimed drugs should be obtained for each dilution.

230 9. To arrive at the LOD a probit analysis should be performed, Probit analysis is defined as a
231 specialized form of regression analysis applied to binomial response variables, transforming a
232 concentration-response curve into a straight line for analysis through methods like least
233 squares or maximum likelihood regression. It is primarily used in molecular biology
234 measurement procedures, such as PCR, to determine the detection probability of analytes at
235 various concentrations.

236 ***LOD for detection of drug resistance***

237 1. To test the drug resistant MTB strains, well-characterized MTBC strains of known
238 concentration (expressed as CFU/mL) shall be spiked into each claimed MTBC negative
239 specimen type. DR strains shall be characterized by sequencing.

240 2. Relevant DR strains (as mentioned in table below) shall be spiked into each claimed MTBC-
241 negative specimen type (e.g., raw and/or processed sputum, and each claimed extra-
242 pulmonary specimen).

243 3. If the assay detects resistance to more than 1 target drug, the LOD for each target drug in
244 addition to a composite resistance LOD, defined as the highest LOD among the tested target,
245 shall be reported.

246 4. Analytical sensitivity for resistance detection shall be estimated as the lowest number of
 247 colony-forming units (CFU) per specimen that can be reproducibly distinguished from
 248 negative specimens with 95% confidence.

249 5. The determination shall comprise 24 replicate tests (8 replicate tests on each of 3 days) of a
 250 minimum 8 8-member 0.5log10 dilution panel. The replicate testing shall be conducted on
 251 three different days using 2 lots, and at least 2 dilution series shall be tested.

252 **Table 2: Anti-mycobacterial drugs and common mutations**

S.No	Drugs	Resistance mutation of strains to be tested
1	Isoniazid	katG_S315T and fabG1_c-15t
2	Rifampicin	rpoB_S450L; rpoB_D435V; rpoB_H445Y; rpoB_H445D; rpoB_D435Y; rpoB_S450W; rpoB_L452P; rpoB_H445L; rpoB_S450F; rpoB_L430P; rpoB_H445R; one rpoC mutation
3	Levofloxacin (CC) LFX2,3	gyrA_A90V, gyrA_D94G, gyrA_D94H, gyrA_D94N, gyrA_D94Y, gyrA_S91P
4	Moxifloxacin (CC and CB)	gyrA_A90V, gyrA_D94G, gyrA_D94H, gyrA_D94N, gyrA_D94Y, gyrA_S91P
5	Bedaquiline	Rv0678_LoF, pepQ_LoF, atpE_p.Ala63Pro
6	Linezolid	rplC_p.Cys154Arg, rrl_n.2814G>T
7	Ethambutol	embB_M306L, embB_M306V, embB_Q497R
8	Delamanid	ddn_LoF, ddn_p.Leu49Pro, fbiC_LoF
9	Pyrazinamide	pncA_V139A, pncA_V139G
10	Amikacin	rrs_A1401G, rrs_A1401G, rrs_G1484T, eis /promoter_C-12T, eis /promoter_C-14T
11	Kanamycin	rrs_A1401G, rrs_A1401G, rrs_G1484T, eis /promoter_C-12T, eis /promoter_C-14T
12	Capreomycin	rrs_A1401G, rrs_A1401G, rrs_G1484T, eis /promoter_C-12T, eis /promoter_C-14T
13	Ethionamide	fabG1_c-15t, inhA_S94A, fabG1_T-8C
14	Pretomanid [#]	ddn_LoF, ddn_p.Leu49Pro, fbiC_LoF
15	Cycloserine	Alr_C-8T, alr_M319T, alr_Y364D, ald_T-32C, ddIA T365A
16	PAS	thyA_T22A, folC_I43T, folC_R49W

253 **8. Reproducibility**

254 Within-run (same operator, same measuring system, same operating conditions, and same
255 location), Between-run, -lot, -day, -site, -operator.

256 1. Three specimens will be used; MTB sensitive (H37Rv), MTB resistant and MTB negative.

257 2. The effect of operator-to-operator variation on IVD performance will be included as part of
258 the precision studies. Each lot will comprise different production (or manufacturing,
259 purification, etc.) runs of critical reagents.

260 3. The nucleic extraction/purification component will also be considered for estimating
261 precision.

262 4. Contrived specimens will be used (i.e., MTBC strains with specific/most common mutations
263 in the target genes spiked into a clinical matrix claimed in the IFU) for repeatability and
264 reproducibility studies.

265 5. DR specimens at the concentrations specified for each DRTB (i.e. RR-TB, Hr-TB, MDR-TB,
266 TB resistant to fluoroquinolones) as described in the table on resistance detection.

267 6. If there are two or more invalid results for the same specimen in the same run, then the run
268 should be repeated for this specimen. Invalid results should be reported.

269 7. Results will be statistically analyzed by ANOVA or other methods to identify and isolate the
270 sources and extent of any variance.

271 8. Furthermore, the percentage of correctly identified, incorrectly identified, and invalid results
272 will be compiled for each specimen and separately categorized by site, lot, and other factors.

273

274 **9. Inclusivity and exclusivity**

275 1. Inclusivity MTBC stains: *M. bovis*

276 2. Exclusivity NTM strains: *M. avium*, *M. kansasii*, *M. intracellulare*

277 3. Representative MTBC and non-tuberculosis mycobacteria (NTM) strains will be tested in
278 triplicate for inclusivity and exclusivity verification.

279 4. Resistance detection: For assays with a claim for detection of drug resistance, the
280 applicable specimens from the resistance detection panel will be tested in triplicate.

281 5. The concentration of MTBC isolates used in inclusivity studies will be at levels at or near
282 the specific LOD and will be confirmed by plating/ counting bacterial CFUs (estimated

283 using Truenat).

284 6. The selection of specific MTBC strains with relevant genetic variations linked to DR will
285 be made to support the claims in the IFU.

286 7. This will involve testing strains that carry the most common mutations, including
287 associated or interim resistance mutations, covering at least 80% of the resistance
288 mechanisms observed globally for each of the assay target drugs (as shown in table 2).

289

290 **10. Cross-contamination/carry-over**

291 1. The experiment will allow the determination of the well-to-well or vial-to-vial cross-
292 contamination rate of high-throughput platforms or potential carryover in low-throughput
293 instruments.

294 2. This will be assessed by alternating one high-positive specimen with one negative
295 specimen and repeating this sequence twenty times.

296 3. For high-throughput assays, this will be achieved by alternating high-positive and high-
297 negative specimens in the same plate/run.

298 4. For low-throughput assays, each sequence of highly positive specimens followed by
299 negative specimens should be done on the same instrument.

300 5. If more than one instrument is used, each run (i.e same instrument and same day) should
301 include a minimum of 2 sets of alternating high-positive and negative specimens.

302 6. Contrived specimens prepared by spiking MTBC strains into MTBC negative clinical
303 sputum will be used for these studies.

Note: The strains used for assessment of reproducibility, inclusivity/exclusivity, resistance detection, and carry-over may be commercially acquired or locally prepared, well-characterized strains (by phenotypic DST and sequencing).

304

305

306

307

308

309 **11. Resolution of discrepancy:**

310 • The results of MGIT culture should be used to resolve any discrepancy in detection of
311 MTB
312 • Results of phenotypic DST and sequencing should be used to resolve discrepancy in
313 detection of MDR-TB.

315

316 **VII. Statistical Analysis Plan**

317 1. The index molecular test should be evaluated for its analytical sensitivity and analytical
318 specificity.
319 2. 95% Confidence interval should be calculated for each of the parameters.

320 % Sensitivity =
$$\frac{\text{Positives by index test}}{\text{Confirmed positives by MGIT culture}} \times 100 = [a/a+c] * 100$$

321
322
323 % Specificity =
$$\frac{\text{Negatives by index test}}{\text{Confirmed negatives by MGIT culture}} \times 100 = [d/b+d] * 100$$

324 **VIII. Acceptance Criteria**

325 **Acceptance criteria for Diagnostic tests:**

326 Expected sensitivity: $\geq 90\%$

327 Expected specificity: $\geq 95\%$

328 Sample Size: ~ 100 confirmed MTB positives (by MGIT culture), ~ 100 confirmed MTB
329 negatives (by MGIT culture) and ~ 50 NTM samples (confirmed by culture and identification)

330

334 **Acceptance criteria for Screening tests:**

Test Type	Minimal Accuracy	Optimal accuracy
High Sensitivity high specificity screening test	90% Sensitivity 80% specificity	95% Sensitivity 95% specificity
High Sensitivity screening test	90% Sensitivity 60% specificity	95% Sensitivity 85% specificity
High specificity screening test	60% Sensitivity 98% specificity	70% Sensitivity 98% specificity

335 Source: WHO TPP 2025

336

337 **IX. Publication Rights**

338 The PI(s) of the evaluating labs shall retain publication rights of the evaluation as lead author(s).

339

340 **IMPORTANT NOTE**

341 **Once a kit is determined to be “Not of Standard Quality”, following the procedure outlined
342 in this document, no further requests for repeat testing of that kit will be accepted.**

343

344 **Any request of re-validation from the same manufacturer for the same test type will only
345 be entertained after a minimum of 3 months and only if a high-level technical summary of
346 modifications or functional improvements to the kit design is submitted, without explicit
347 disclosure of proprietary information.**

348

349 **Clinical samples are precious, therefore, repeat evaluation of a kit using the same/ different
350 well-characterized sample panel at a different laboratory may be considered only for kits
351 which claim high performance characteristics (sensitivity and specificity 95% and above),
352 but which fail the performance evaluation by a margin of 5%.**

353

354

355 References

356 1. Technical Specifications Series for Submission to WHO Prequalification – Diagnostic
357 Assessment. TSS 17 In vitro diagnostic medical devices used for the qualitative detection of
358 Mycobacterium tuberculosis complex DNA and mutations associated with drug-resistant
359 tuberculosis. <https://iris.who.int/bitstream/handle/10665/366068/9789240055865-eng.pdf>.

360 2. Miotto, P., Tessema, B., Tagliani, E., Chindelevitch, L., Starks, A. M., Emerson, C., Hanna,
361 D., Kim, P. S., Liwski, R., Zignol, M., Gilpin, C., Niemann, S., Denkinger, C. M., Fleming, J.,
362 Warren, R. M., Crook, D., Posey, J., Gagneux, S., Hoffner, S., Rodrigues, C., ... Rodwell, T.
363 C. (2017). A standardised method for interpreting the association between mutations and
364 phenotypic drug resistance in *Mycobacterium tuberculosis*. *The European respiratory journal*,
365 50(6), 1701354. <https://doi.org/10.1183/13993003.01354-2017>.

366 3. Indian Catalogue of *Mycobacterium tuberculosis* Mutations and their Association with Drug
367 Resistance, Version 2.0 2024, ICMR-NIRT.
368 https://www.nirt.res.in/pdf/mutation_catalogue_v2.pdf.

369 4. Target product profiles for tuberculosis screening tests. Geneva: World Health Organization; 2025.
370 Licence: CC BY-NC-SA 3.0 IGO. Available at:
371 <https://iris.who.int/bitstream/handle/10665/382179/9789240113572-eng.pdf?sequence=1>.

372 5. WHO manual for the preparation of secondary reference materials for in vitro diagnostic assays
373 designed for infectious disease nucleic acid or antigen detection: calibration to WHO International
374 Standards. Available at: <https://www.who.int/publications/m/item/annex-6-trs-no-1004>

375

376

377

378

Analytical Performance Evaluation of IVD for Pulmonary Tuberculosis

379
380
381

PERFORMANCE EVALUATION REPORT FORMAT
Performance Evaluation Report For MTB/MDR-TB Kit

Name of the product (Brand/generic)	
Name and address of the legal manufacturer	
Name and address of the actual manufacturing site	
Name and address of the Importer	
Name of supplier: Manufacturer/Importer/Port office of CDSCO/State licensing Authority	
Lot No /Batch No.:	
Product Reference No/ Catalogue No	
Type of Assay	
Kit components	
Manufacturing Date	
Expiry Date	
Pack size (Number of tests per kit)	
Intended Use	
Number of Tests Received	
Regulatory Approval:	
Import license / Manufacturing license/ Test license	
License Number:	
Issue date:	
Valid Upto:	
Application No.	
Sample	Sample type
Panel	Positive samples (provide details: strong, moderate, weak)
	Negative samples (provide detail: clinical/spiked, including cross reactivity panel)

382

383 Results:

384

		Reference assay (MGIT/MGIT DST for RIF/INH/FQ/others)		
		Positive	Negative	Total
Name of MTB or MDR-TB kit	Positive			
	Negative			
		Total		

385

	Estimate (%)	95% CI
Sensitivity		
Specificity		

386

387

388

389 **Conclusions:**

390

391 ○ Sensitivity, Specificity
392 ○ Performance: **Satisfactory / Not satisfactory**

393

394 *(Sensitivity and specificity have been assessed in controlled lab setting using kits provided by the manufacturer from*
395 *the batch mentioned above using sample. Results should not be extrapolated to other sample types.)*

396

397 **DISCLAIMERS**

398

399 1. This validation process does not approve / disapprove the kit design
400 2. This validation process does not certify user friendliness of the kit / assay

401

402 **Note:** This report is exclusively forKit (Lot No.....), versionwith the
403 gene targetsmanufactured by(Supplied by).

404

405 Evaluation Done on

406

407 Evaluation Done by

408

409

410

411

412 Signature of Director/ Director-In-charge Seal

413

414 *****End of the Report*****

415

416

417

1
2
3
4

5

ICMR-CDSCO STANDARD PERFORMANCE EVALUATION PROTOCOLS

6 FIELD PERFORMANCE EVALUATION OF IN-VITRO
7 DIAGNOSTICS FOR PULMONARY DRUG
8 RESISTANT TUBERCULOSIS

9 ICMR-CDSCO/IVD/TB/PROTOCOLS/3/2025

10
11

DIVISION OF COMMUNICABLE DISEASES, ICMR
IN VITRO DIAGNOSTICS DIVISION, CDSCO
AUGUST, 2025
India

12
13
14
15
16

LIST OF CONTRIBUTORS

A. Working Group:

1. Dr Sivakumar, Scientist E and Head, Department of Bacteriology, ICMR-NIRT, Chennai
2. Dr Joy Sarojini Michael, Professor, CMC, Vellore
3. Dr Shubhada Shenai, Senior Scientist, FIND
4. Dr Madhumathi J, Scientist D, Division of Communicable Diseases (CD), ICMR, New Delhi

B. Review Committee:

1. Dr Amita Jain, Professor and Head, Department of Microbiology, KG MU
2. Dr RM Pandey, ICMR- Dr A.S. Paintal Distinguished Scientist Chair
3. Dr. Camilla Rodrigues, Senior Consultant, P.D. Hinduja Hospital, Mumbai
4. Dr Gita Nataraj, Professor Emeritus, Microbiology, Seth GS Medical College and KEM Hospital, Mumbai
5. Dr Ashutosh Aggarwal, Professor and Head, Pulmonary Medicine, PGIMER
6. Dr Venkataraghava Mohan, Professor & Head, Dept. of Community Health and Development, CMC Vellore
7. Mr Pramod Meshram, Deputy Drugs Controller, Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India
8. Dr. Sella Senthil, Assistant Drugs Controller, Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India
9. Dr Nivedita Gupta, Scientist-G and Head of the Division of Communicable Diseases, ICMR Headquarters, Department of Health Research, Ministry of Health and Family Welfare, Government of India

43
44
45

46
47
48
49

Field Performance Evaluation of IVD for Pulmonary DR-TB

Table of Contents

S.No	Content	Page Number
I.	Background	4
II.	Purpose	4
III.	Study Design	4
IV.	Ethical Considerations	4
V.	Blinding of Laboratory Staff	6
VI.	Procedure	
	i. Preparation of Evaluation sites/laboratories	8
	ii. Study Participants	8
	iii. Eligibility of Participants	8
	iv. Reference and Index tests	9
	v. Sample size	9
	vi. Implementation Plan	11
	vii. Sample collection, processing and storage	13
	viii. Laboratory Tests	14
	ix. Data Analysis and resolution of discrepancy	14
	x. Quality Control (QC) measures	15
VII.	Statistical Analysis Plan	15
VIII.	Acceptance Criteria	16
	Important Note	16
	References	16
	Performance Evaluation Report Format	17

50
51

52 **I. Background**

53 CDSCO and ICMR, New Delhi, have aimed at facilitating the availability of Quality-Assured
54 diagnostic kits appropriate for use in India. This protocol gives the methods to be used for
55 evaluating the clinical performance characteristics of the in-vitro diagnostic test in detecting
56 pulmonary drug resistant tuberculosis (DR-TB).

57

58 **II. Purpose**

59 To evaluate the clinical performance characteristics of nucleic acid amplification tests (NAAT)
60 for diagnosis of pulmonary drug resistant tuberculosis (DR-TB) using prospectively collected
61 sputum samples in clinical settings.

62 ***Primary Objectives***

- 63 1. To determine the diagnostic accuracy of new multi-drug resistant (MDR) NAAT test against
64 culture based drug sensitivity testing (DST) in detecting first line drug resistance [Rifampicin
65 (RIF), Isoniazid (INH)] among the microbiologically confirmed TB patients (positive by
66 smear or NAAT test).
- 67 2. To determine the diagnostic accuracy of new NAAT test against culture-based drug
68 sensitivity testing (DST) in detecting fluroquinolone (FQ) drug resistance among MDR-TB/
69 RR-TB pulmonary tuberculosis patients

70

71 **III. Study Design**

72 Cross-sectional prospective multi-centric diagnostic accuracy study of IVD for detection of
73 pulmonary drug resistant TB, using Mycobacterium Growth Indicator Tube culture and drug
74 sensitivity testing (MGIT-DST) as the microbiological reference standard.

75

76 **IV. Ethical Considerations**

- 77 1. The study should be compliant to the ICMR's Guidance on Ethical Requirements for
78 Laboratory Validation Testing, 2024. Performance evaluation activities using irreversibly de-
79 identified leftover clinical samples are exempt from ethics approval as per ICMR's Guidance
80 on Ethical Requirements for Laboratory Validation Testing, 2024. Investigators are required
81 to submit a self-declaration form, as outlined in the ICMR guidelines, to the institutional
82 authorities and ethics committee for information.

83 2. Sputum specimens should be collected, as required for routine diagnostic evaluation, from
84 patients who are suspected of having pulmonary TB as per algorithm. Probability of harm or
85 discomfort anticipated in the research is nil or not expected.

86 3. Enrolment of subjects should be continued till the sample size is met or till the project
87 duration is completed.

88 4. If additional sputum sample is obtained, written consent must be obtained as per the ICMR
89 National Ethical Guidelines for Biomedical and Health Research Involving Human
90 Participants. The institutional ethics committee of each participating site should be intimated
91 about the study for necessary approval prior to initiating the study. Assent form should be
92 collected in addition to informed consent in case of adolescents (13 to 16 yrs). For children
93 between 7 and 12 years old, oral assent should be obtained in presence of parent or legal
94 guardian. For children under 7 years old, written informed consent should be obtained from
95 parent or legal guardian.

96 5. The protection of privacy of research participants will be ensured by encrypting the patient
97 identifiers.

98 6. Patients shall receive the best possible diagnostic work-up as per the routine practice and the
99 National Tuberculosis Elimination Program (NTEP) guidelines. There should not be delay in
100 sending report due to the study.

101 7. TB treatment decisions should not be made based on the result of the index test under
102 evaluation, but on the basis of the routine clinical and laboratory methods (smear, solid /
103 liquid culture, standard NAAT results, and clinical work-up).

104 8. Respect for the dignity of research participants should be prioritized.

105 9. No compensation shall be provided to the participants since there is no additional cost or
106 travel involved in sample collection for the study. Patients should be compensated for travel
107 and time only if they are asked to pay additional visits exclusively for the sake of the study
108 and not during regular treatment visits.

109 10. Follow-up visits may be required for a very limited number of discrepant patients to exclude
110 TB.

111 11. Leftover sputum samples and deposits should be stored for resolving discrepancies. One
112 positive culture and two DNA samples per patient should be stored at -80°C for use later.

113 12. All the sites should follow up with all study participants till the final diagnosis is made and
114 the patient should be initiated on appropriate treatment as per NTEP norms. Those found to
115 be *M. tuberculosis* complex (MTB) positive by standard NAAT test should be started on
116 anti-tuberculosis treatment (ATT) by medical officer of the study site as per NTEP
117 guidelines.

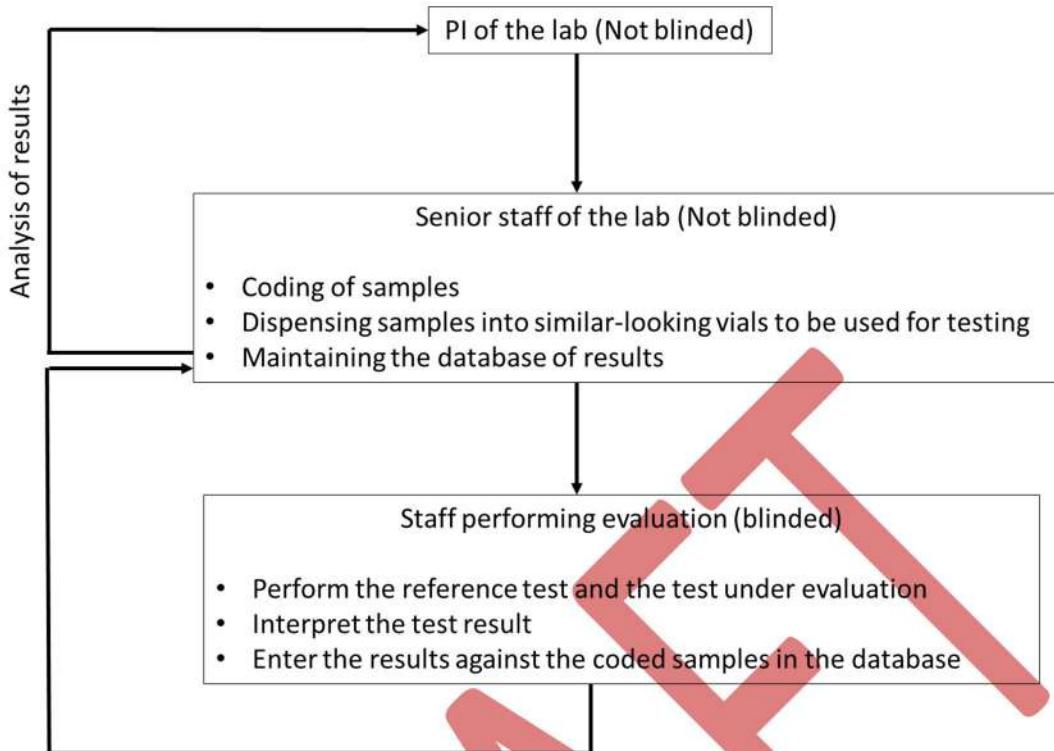
118 13. The findings of the study should be made accessible through reports.

119
120

V. Blinding of Laboratory Staff

122 To ensure rigor of the evaluation process, laboratory staff performing the evaluation should be
123 blinded to the status of the clinical samples. The PI of the evaluation exercise should remain
124 unblinded, i.e., privy to the status of the samples. Another senior laboratory staff selected by the
125 PI may remain unblinded and carry out coding of samples and dispensing them into similar-
126 looking vials to be used for testing, and maintaining the database of results.

127


128 Staff performing the reference test and the test under evaluation (index test), interpretation of the
129 test result, and entering the results against the coded samples in the database, should remain
130 blinded to the status of samples till the completion of evaluation.

131

132 Operators conducting routine laboratory tests (GeneXpert MTB/RIF, MGIT DST, LPA etc.) will
133 not participate in the index test evaluation. Instead, dedicated operators, who are not involved in
134 routine testing and are blinded to the routine test results, will perform the index test. The results
135 will be recorded independently for each test without any patient identifiers. The result sheets will
136 be shared with the investigator for result analysis. The evaluation study data should be analyzed
137 only by the PI of the evaluating lab (Fig. 1).

138
139

Field Performance Evaluation of IVD for Pulmonary DR-TB

Figure 1 Blinding in evaluation exercise

140
141
142
143
144

145 **VI. Procedure**

146 **1. Preparation of Evaluation sites/laboratories**

148 • Laboratory must be approved by the NTEP.

149 • Accreditation for at least one Quality management system [accreditation for Testing Lab /

150 Calibration Lab (ISO/IES 17025), Medical Lab (ISO 15189), PT provider ISO/IEC

151 17043 or CDSCO approved Reference laboratory].

152 • Three or more sites from different geographical regions should perform clinical

153 validation for representation of population in real world setting.

154 **2. Study Participants**

156 i. **For First Line Drug Resistance:** People with microbiologically confirmed

157 pulmonary TB by smear and/or NTEP approved NAAT test attending hospital

158 OPDs/Chest clinics/district microscopy centers (DMCs) and Directly Observed

159 Therapy Short Course (DOTS) centers.

160 ii. **For Second Line Drug Resistance:** All patients with microbiologically confirmed

161 MDR-TB/RR-TB (RIF resistant TB by NAAT test) attending the hospital OPDs/Chest

162 clinics/DMCs/DOTS centers

163 All such consecutive cases (not currently receiving ATT) and willing to provide

164 consent should be enrolled in the study.

165 **3. Eligibility of Participants**

167 ***Inclusion criteria for testing First Line Drugs***

168 i. Individuals positive for TB by smear or any approved NAAT test (Xpert® MTB/RIF) and

169 not receiving ATT

170 ii. Individuals willing to give consent

171 iii. Individuals who are able and willing to give two good quality mucopurulent sputum

172 samples of ≥ 3 ml

173

174

175 ***Inclusion criteria for testing Second Line Drugs***

176 i. All patients with microbiologically confirmed MDR-TB/RR-TB (RIF positive by NAAT
177 test)
178 ii. Individuals who are able and willing to give two sputum samples of ≥ 3 ml

179

180 ***Exclusion criteria***

181 i. Individuals on TB treatment for >10 days
182 ii. Individuals not consenting for the study
183 iii. Individuals unable to produce two sputum samples of ≥ 3 ml

184

185 **4. Reference and Index tests**

	Index test	Reference Test	Comparator
First Line Drug Resistance	New NAAT test for RIF/INH	MGIT Culture DST for RIF and INH	FL-LPA: GenoType MTBDRplus
Second Line Drug Resistance	New NAAT test for FQ	MGIT Culture DST for Moxifloxacin (0.25, 1 mg) and Levofloxacin (1 mg)	SL-LPA: GenoType MTBDRsl

186

187 **5. Sample size**

188 **Sample size for RIF and INH resistance among TB patients**

189 The expected sensitivity of the index test is about 90% with 5 % precision and the expected
190 specificity is 95% with 5% precision. With a confidence interval of 95 % and assuming 10 %
191 loss due to indeterminate results, the sample size required is estimated to be approximately
192 200 patient's positive each for INH and RIF resistance either alone or in combination. The
193 average prevalence of Isoniazid and Rifampicin are ~18 % and 7.3 % respectively, among the
194 new and previously treated TB patients combined together (Report of drug resistance survey,
195 2014-16). The number needed to screen to obtain 200 drug resistant cases will be
196 approximately 1111 for INH resistance and 2857 for RIF resistance. The participants will be
197 enrolled till the required sample size is achieved for INH and RIF resistance.

198

199

200 **Sample size for FQ resistance among MDR/RR TB patients**

201 The expected sensitivity of the index test for detecting FQ resistance is 90 % with 5 %
 202 precision and the expected specificity is 95 % with 5 % precision. Assuming 10 % loss, the
 203 sample size required is 200 FQ resistant cases. The prevalence of FQ resistance among
 204 MDR/RR TB patients is 20 % (Report of drug resistance survey, 2014-16). Hence, the number
 205 needed to screen will be approximately 890. The participants will be enrolled till the required
 206 sample size is achieved for FQ resistance. Table 1 shows sample sizes required for RIF, INH
 207 and FQ drug resistance.

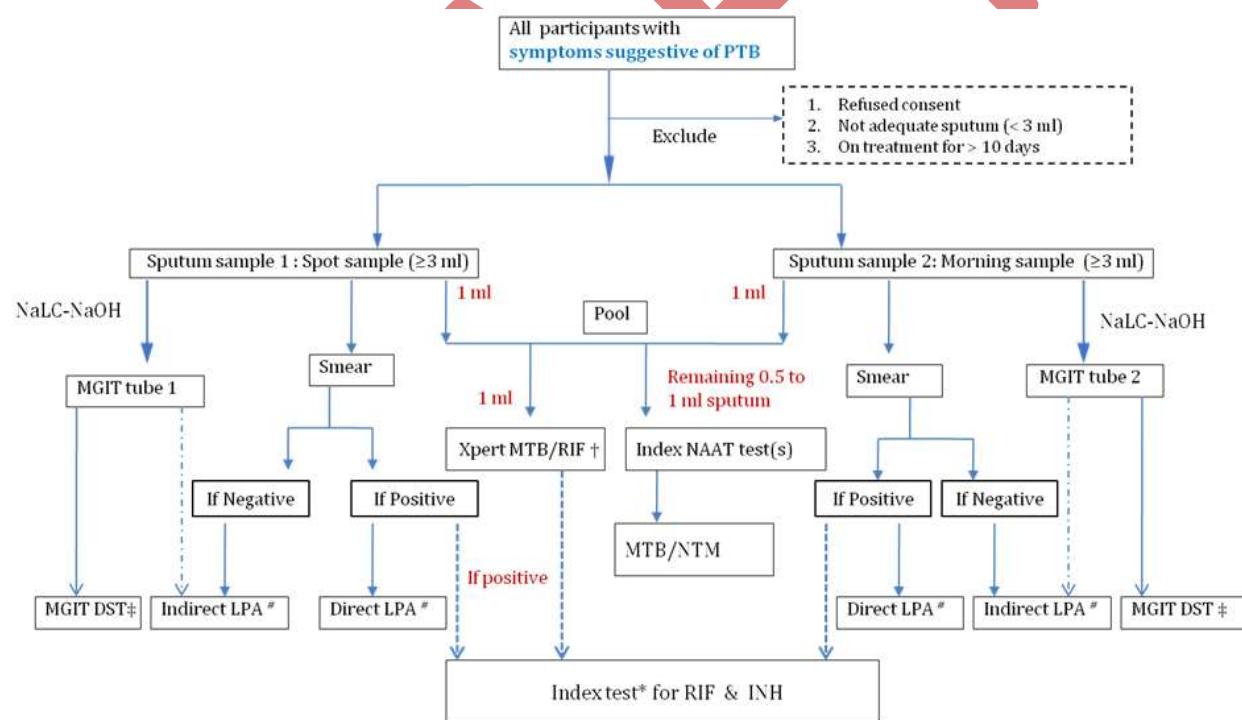
208
 209 **Table 1. Sample sizes for RIF, INH and FQ Drug Resistance**
 210

	Assumptions for Sensitivity	Assumptions for Specificity
Sensitivity/Specificity of the new test (%)	90	95
Relative precision (d) (%)	5	5
Desired confidence level (1- alpha) %	95	95
Number of drug resistance (INH and RIF) cases required	178	84
Number of drug resistant cases required with 10 % loss due to indeterminate results	~200	~93
Number needed to be screened assuming a combined weighted average prevalence of ~18 % for INH resistance among the new and previously treated TB patients	1111	517
Number needed to be screened assuming a combined weighted average prevalence of ~7 % for RIF resistance among the new and previously treated TB patients	2857	1329
Number needed to be screened considering a prevalence of 20 % for FQ resistance among MDR/RR TB	890	465

211
 212 **Other disease controls (to check cross-reactivity in real patients)**

213 Include people with common alternative diagnoses to mirror programmatic reality and probe
 214 false positives. This subset helps characterize clinical exclusivity beyond simple “TB-
 215 negative” status:

216


217 i. Non-Tuberculous Mycobacteria (Culture or PCR confirmed): ~30
 218 ii. Other respiratory diseases [e.g., bacterial pneumonia, chronic obstructive pulmonary
 219 disease (COPD), lung cancer, chronic fungal (like Histoplasmosis or Aspergillosis)]: ~30
 220 patients combined.

221

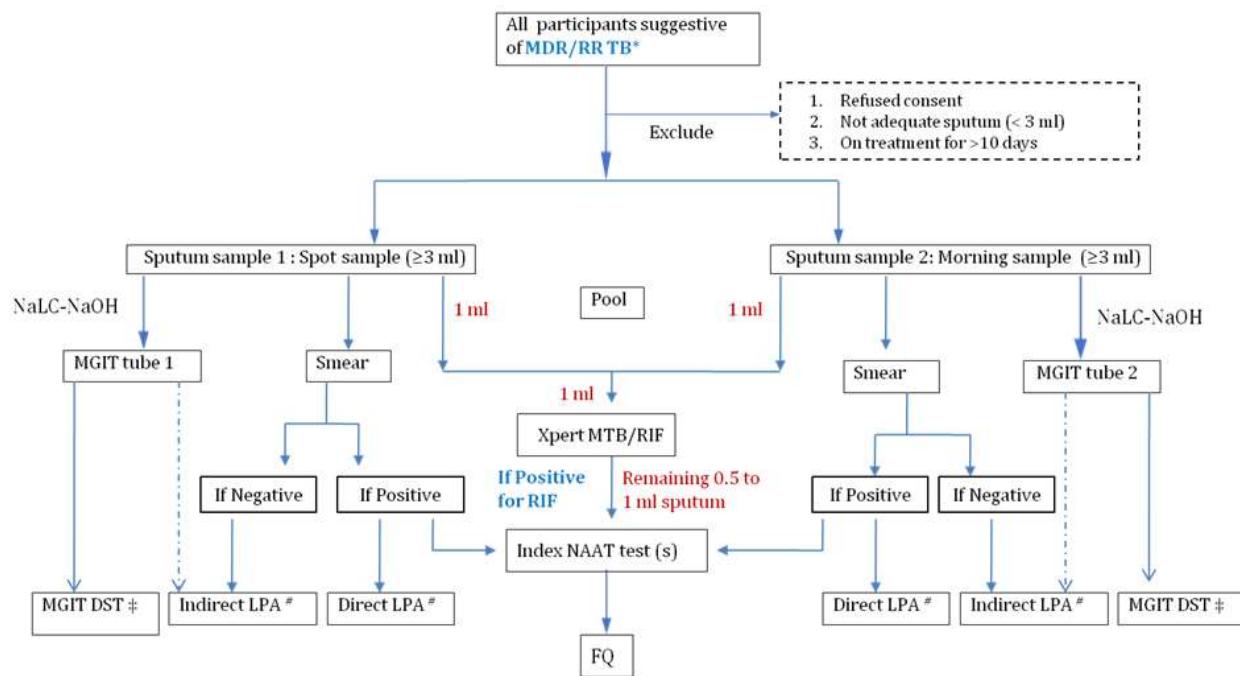
222 **6. Implementation Plan**

223 The samples will be collected and tested as per the routine practice for smear, Xpert
 224 MTB/RIF®, LPA, MGIT culture and DST. The samples with positive result for MTB either in
 225 smear or NAAT test should be tested for first line drug resistance (RIF and INH). The
 226 samples that are positive for MDR/RR (positive for rifampicin resistance by NAAT test)
 227 should be used for testing drug resistance for second line drugs.

228

* Index test RIF and INH: Samples tested positive by either smear or Xpert will be tested by Index test for drug resistance (DR cartridge) - RIF & INH

LPA: Any one positive sample will be used for LPA- Direct LPA if smear positive and indirect LPA if smear negative and culture positive.


‡ MGIT DST: Any one positive culture (tube 1 or 2) will be used for DST

229

230

231 **Figure 2. Flowchart for evaluating IVDs for testing drug resistance to RIF and INH
 232 among pulmonary TB (PTB) patients**

233

*Enrolment in the study: MDR/RR TB- Positive for Rif by NAAT test

LPA: Any one positive sample will be used for LPA- Direct LPA if smear positive and indirect LPA if smear negative and culture positive.

‡ MGIT DST: Any one positive culture (tube 1 or 2) will be used for DST

234
235

236 **Figure 3. Flowchart for evaluating IVDs for testing drug resistance to FQ among MDR/RR**
237 **TB patients**

239 **7. Sample collection, processing and storage**

240

241 1. Two sputum samples each of minimum 3 ml should be collected (one spot and one morning
242 specimen) and sent to laboratory.

243 2. Approximately 1 ml of sample should be taken from each sample and pooled under sterile
244 conditions (total of 2 ml).

245 3. Around 1 ml of pooled sample should be tested by the standard NAAT (Xpert MTB/RIF[®])
246 and remaining sample used for index test(s).

247 4. The remaining portion of each sputum sample should be subjected to direct smear and
248 decontamination by NaLC-NaOH method individually.

249 5. All smear positive or NAAT positive samples will be tested by Line Probe Assay (LPA).

250 6. The resultant deposit should be used for inoculation into two MGIT960 tubes.

251 7. All positive cultures should be identified using rapid Immuno-chromatography test (ICT).
252 (Ideally, positive MGIT tubes are tested within 5 days of instrument positivity. Interpretation
253 of the result should be done within 15 minutes).

254 8. The positive cultures should be tested for drug sensitivity.

255 9. All sputum samples should be stored at -20°C for later use. Decontaminated sediments and
256 one positive culture per patient should be stored at -80°C, if necessary for later use.

257 10. Two DNA samples (one DNA sample extracted for index test and one for LPA) per patient
258 should be stored at -20°C till the end of the study for resolution of discrepant results.

259 11. The index tests should be carried out as per the algorithm (figure 2) and as per the
260 manufacturers' instructions in the instructions for use (IFU).

261

262 All conventional test procedures for smear, culture (solid and liquid) and Xpert MTB will be
263 performed as per NTEP national laboratory guidelines (CTD, 2016; RNTCP 2009) and laboratory
264 manual of ICMR-NIRT (NIRT, 2010). Standard operating procedures for index test(s) will be
265 provided by the manufacturer(s) including use of positive and negative controls. All procedures
266 for preparation of media, reagents, washing, decontamination, disposal and storage will be
267 performed according to the standard operating procedures (SOP) of ICMR-NIRT (NIRT, 2010)
268 and WHO, (WHO, 2022).

269

270

271

272 **8. Laboratory Tests**

273

274 i. Smear microscopy: Two direct sputum smear

275 ii. MGIT culture (decontaminated with 1-1.5% final NaOH); Two MGIT tubes (one per

276 specimen) for each patient

277 iii. MGIT drug sensitivity testing (DST) for Rif, INH: Drug sensitivity testing will be carried

278 out from any one positive MGIT culture.

279 iv. MGIT drug sensitivity testing for moxifloxacin (0.25 mg and 1 mg) and levofloxacin (1

280 mg). Drug sensitivity testing should be carried out in from any one positive MGIT culture.

281 v. Speciation of culture: Rapid immunochromatographic test (ICT) of MGIT culture

282 vi. LPA: LPA shall be carried out as per routine practice and as per NTEP guidelines. Direct

283 LPA should be carried out from any one smear positive sample. If the sample is smear

284 negative and culture positive, indirect LPA should be carried out from culture. First line

285 LPA (FL-LPA) will be carried out (Rif and INH resistance)

286 vii. XpertMTB/RIF (one test per patient)

287

288 **9. Index test**

289 i. Index test will be performed as per manufacturer's instructions following blinded study

290 protocols.

291 ii. At least 2 different lots of reagents should be tested across the study population to

292 demonstrate consistency of test performance and minimize lot-related bias.

293 iii. The results of the index test will not be disclosed to study participants or clinicians and will

294 not be used to guide treatment decisions.

295

296 **10 . Data Analysis and resolution of discrepancy**

297 i. If the index test produces error or indeterminate results, then only one repeat is allowed.

298 The results of first test and repeat test should be recorded separately. All

299 Invalids/Indeterminates/errors should be recorded and reported.

300 ii. Results for new patients and previously treated patients should be entered separately.

301 Result analysis will be carried out for these two populations separately as well as

302 combined.

303 iii. A subgroup analysis may be carried out for pediatric population.

304 **11. Quality Control (QC) measures**

305 All sites should ensure high quality laboratory procedures, data recording and documentation.
306 There should be no deviation from the protocol. All the sites should participate in internal
307 quality control (IQC) and external quality assurance (EQA) for all methods as per the
308 standard manuals of Global Laboratory Initiative (GLI, 2014).

309 **Culture:** Positive (Reference strain H37Rv or H37Ra) and negative controls for MGIT and
310 LJ cultures would be tested as per NTEP guidelines. MGIT Time to detection QC for MTB
311 reference strain would be performed every month/new lot of reagents/machine service.
312 Sterility and performance testing of culture media would be performed with every new batch
313 or lot.

314 **Drug sensitivity testing (DST):** Standard ATCC strains should be used for each drug as
315 reference control. QC should be performed whenever a new batch of drugs is prepared, after
316 servicing of the instrument and after long gap of setting up DST.

317 **Molecular diagnostics:** For molecular diagnostics internal quality control includes control
318 supplied by the manufacturer and control prepared by the lab from the previous testing. The
319 internal control should be used whenever batch of test kit changes, machine is serviced, and
320 newly trained person is introduced into the system.

321

322 **VII. Statistical Analysis Plan**

323 i. The performance of the diagnostic kits should be evaluated by calculating the sensitivity,
324 specificity, positive predictive value, negative predictive value and accuracy with reference to
325 the gold standard. 95% Confidence interval should be calculated for each of the parameters.

326 ii. The index molecular test will be evaluated for its performance with reference to MGIT DST
327 (for RIF/INH/FQ).

328 iii. Similarly, the performance of NTEP approved molecular test (Xpert MTB/RIF and LPA)
329 should be estimated with reference to MGIT DST.

330 iv. The agreement between the index test and molecular test for drug resistance (LPA) should be
331 calculated using kappa statistic.

332

333

334 **VIII. Acceptance Criteria**

335 Expected minimal sensitivity for MTB and Drug Resistant TB: $\geq 85 \pm 2\%$
336 Expected minimal specificity for MTB and Drug Resistant TB: $\geq 95 \pm 2\%$
337 Sample size: ~200 positives for each drug resistance (RIF or INH or FQ etc) (either alone or in
338 combination) and ~ 100 negatives for each drug resistance (RIF or INH or FQ etc).

339

340 **IMPORTANT NOTE**

341 Once a kit is determined to be “Not of Standard Quality”, following the procedure outlined
342 in this document, no further requests for repeat testing of that kit will be accepted.

343

344 Any request of re-validation from the same manufacturer for the same test type will only
345 be entertained after a minimum of 3 months and only if a high-level technical summary of
346 modifications or functional improvements to the kit design is submitted, without explicit
347 disclosure of proprietary information.

348

349 Clinical samples are precious, therefore, repeat evaluation of a kit using the same/ different
350 well-characterized sample panel at a different laboratory may be considered only for kits
351 which claim high performance characteristics (sensitivity and specificity 95% and above),
352 but which fail the performance evaluation by a margin of 5%.

353

354 **References**

- 355 1) Report of the first national anti-tuberculosis drug resistance survey India, 2014-2016.
- 356 2) Technical and operational guidelines for tuberculosis control in India 2016. Central TB
357 Division.
- 358 3) RNTCP Standard Operating Procedures for Tuberculosis lab for culture and DST, 2009.
- 359 4) Standard Operating Procedures (SOP) for Mycobacteriology laboratory, ICMR-NIRT, 2010.
- 360 5) Practical manual on tuberculosis laboratory strengthening, 2022 update. Geneva: World
361 Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO.
- 362 6) Mycobacteriology laboratory manual, Global laboratory initiative, First edition, April 2014,
363 Stop TB Partnership.

364

365

366

PERFORMANCE EVALUATION REPORT FORMAT

367

Performance Evaluation Report For MDR-TB Kit

368

Name of the product(Brand/generic)	
Name and address of the legal manufacturer	
Name and address of the actual manufacturing site	
Name and address of the Importer	
Name of supplier: Manufacturer/Importer/Port office of CDSCO/State licensing Authority	
Lot No /Batch No.:	
Product Reference No/Catalogue No	
Type of Assay	
Kit components	
Manufacturing Date	
Expiry Date	
Pack size (Number of tests per kit)	
Intended Use	
Number of Tests Received	
Regulatory Approval:	
Import license / Manufacturing license/ Test license	
License Number:	
Issue date:	
Valid Upto:	
Application No.	
Sample Panel	Sample type
	Positive samples (provide details: strong, moderate, weak)
	Negative samples (provide detail: clinical/spiked, including cross reactivity panel)

369

370

371 Results:

372

Test	Number of samples tested	Positive	Negative	Invalids/Indeterminates/ Error/Contamination (culture)
Smear				
MGIT culture				
Xpert MTB/RIF				
	Number of samples tested	Sensitive	Resistant	
FL LPA – RIF				
FL LPA - INH				

SL LPA- FQ				
MGIT-DST- RIF				
MGIT-DST-INH				
MGIT-DST-FQ				
New IVD- RIF				
New IVD-INH				
New IVD-FQ				

373

		Reference assay (MGITDST – RIF/INH/FQ)*		
		Positive	Negative	Total
Name of MDR-TB kit	Positive			
	Negative			
		Total		

374

	Estimate (%)	95% CI
Sensitivity		
Specificity		

375

*Report RIF/INH/FQ as separate tables

377

378 **Conclusions:**

379

- 380 ○ Sensitivity, specificity
- 381 ○ Performance: **Satisfactory / Not satisfactory**

382

(Sensitivity and specificity have been assessed in controlled lab setting using kits provided by the manufacturer from the batch mentioned above using sample. Results should not be extrapolated to other sample types.)

384

385 **DISCLAIMERS**

386

- 387 1. This validation process does not approve / disapprove the kit design
- 388 2. This validation process does not certify user friendliness of the kit / assay

389

Note: This report is exclusively forKit (Lot Nos.....), versionwith the gene targetsmanufactured by(Supplied by).

392

Evaluation Done on

394

Evaluation Done by

396

397

398

399

400

Signature of Director/ Director-In-charge Seal

401

*****End of the Report*****

403

1
2
3
4

5

ICMR-CDSCO STANDARD PERFORMANCE EVALUATION PROTOCOLS

6 FIELD PERFORMANCE EVALUATION OF IN-VITRO
7 DIAGNOSTICS FOR PULMONARY TUBERCULOSIS

8 ICMR-CDSCO/IVD/TB/PROTOCOLS/2/2025

9
10

DIVISION OF COMMUNICABLE DISEASES, ICMR
IN VITRO DIAGNOSTICS DIVISION, CDSCO
AUGUST, 2025
India

11
12
13
14
15

LIST OF CONTRIBUTORS

A. Working Group:

1. Dr Gomathi N. Sivaramakrishnan, Former Scientist, ICMR-NIRT, Chennai
2. Dr Sivakumar, Scientist E and Head, Department of Bacteriology, ICMR-NIRT, Chennai
3. Dr Madhumathi J, Scientist D, Division of Communicable Diseases (CD), ICMR, New Delhi
4. Dr Hansraj Choudhary, Scientist C, Division of Communicable Diseases (CD), ICMR, New Delhi

B. Review Committee:

1. Dr Amita Jain, Professor and Head, Department of Microbiology, KGMU
2. Dr RM Pandey, ICMR- Dr A.S. Paintal Distinguished Scientist Chair
3. Dr. Camilla Rodrigues, Senior Consultant, P.D. Hinduja Hospital, Mumbai
4. Dr Gita Nataraj, Professor Emeritus, Microbiology, Seth GS Medical College and KEM Hospital, Mumbai
5. Dr Ashutosh Aggarwal, Professor and Head, Pulmonary Medicine, PGIMER
6. Dr Venkataraghava Mohan, Professor & Head, Dept. of Community Health and Development, CMC Vellore
7. Mr. Pramod Meshram, Deputy Drugs Controller, Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India
8. Dr. Sella Senthil, Assistant Drugs Controller, Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health and Family Welfare, Government of India
9. Dr. Nivedita Gupta, Scientist-G and Head of the Division of Communicable Diseases, ICMR Headquarters, Department of Health Research, Ministry of Health and Family Welfare, Government of India

43
44
45

46
47
48
49**Field Performance Evaluation of IVD for Pulmonary Tuberculosis****Table of Contents**

S.No	Content	Page Number
I.	Background	4
II.	Purpose	4
III.	Study Design	4
IV.	Ethical Considerations	4
V.	Blinding of Laboratory Staff	6
VI.	Procedure i. Preparation of Evaluation sites/laboratories ii. Study Participants iii. Eligibility of Participants iv. Reference and Index tests v. Sample size vi. Implementation Plan vii. Sample collection, processing and storage viii. Laboratory Tests ix. Data Analysis and resolution of discrepancy x. Quality Control (QC) measures	7 7 8 8 8 10 11 12 12 12
VII.	Statistical Analysis Plan	13
VIII.	Acceptance Criteria	13
	Important Note	14
	References	14
	Performance Evaluation Report Format	15

50
51
52
53

54 **I. Background**

55 CDSCO and ICMR, New Delhi, have aimed at facilitating the availability of Quality-Assured
56 diagnostic kits appropriate for use in India. This protocol gives the methods to be used for
57 evaluating the clinical performance characteristics of nucleic acid amplification based in-vitro
58 diagnostic test in detecting pulmonary tuberculosis.

59

60 **II. Purpose**

61 To evaluate the clinical performance characteristics of nucleic acid amplification tests (NAAT)
62 for diagnosis of pulmonary Mycobacterium Tuberculosis (MTB) using prospectively collected
63 sputum samples in clinical setting.

64

65 **III. Study Design**

66 Cross-sectional prospective multi-centric diagnostic accuracy study of IVD for detection of
67 pulmonary TB using Mycobacterium Growth Indicator Tube (MGIT) liquid culture as the
68 microbiological reference standard.

69

70 **IV. Ethical Considerations**

- 71 1. The study should be compliant to the ICMR's Guidance on Ethical Requirements for
72 Laboratory Validation Testing, 2024. Performance evaluation activities using irreversibly de-
73 identified leftover clinical samples are exempt from ethics approval as per ICMR's Guidance
74 on Ethical Requirements for Laboratory Validation Testing, 2024. Investigators are required
75 to submit a self-declaration form, as outlined in the ICMR guidelines, to the institutional
76 authorities and ethics committee for information.
- 77 2. Sputum specimens should be collected, as required for routine diagnostic evaluation, from
78 patients who are suspected of having pulmonary TB as per algorithm. Probability of harm or
79 discomfort anticipated in the research is nil or not expected.
- 80 3. Enrolment of subjects should be continued till the sample size is met or till the project
81 duration is completed.
- 82 4. If additional sputum sample is obtained, written consent must be obtained as per the ICMR
83 National Ethical Guidelines for Biomedical and Health Research Involving Human
84 Participants. The institutional ethics committee of each participating site should be intimated

85 about the study for necessary approval prior to initiating the study. Assent form should be
86 collected in addition to Informed Consent in case of adolescents (13 to 16 yrs). For children
87 between 7 and 12 years old, oral assent should be obtained in presence of parent or legal
88 guardian. For children under 7 years old, written informed consent should be obtained from
89 parent or legal guardian.

90 5. The protection of privacy of research participants will be ensured by encrypting the patient
91 identifiers.

92 6. Patients shall receive the best possible diagnostic work-up as per the routine practice and the
93 National Tuberculosis Elimination Program (NTEP) guidelines. There should not be delay in
94 sending report due to the study.

95 7. TB treatment decisions should not be made based on the result of the index test under
96 evaluation, but on the basis of the routine clinical and laboratory methods (smear, solid /
97 liquid culture, standard NAAT results, and clinical work-up).

98 8. Respect for the dignity of research participants should be prioritized.

99 9. No compensation shall be provided to the participants since there is no additional cost or
100 travel involved in sample collection for the study. Patients should be compensated for travel
101 and time only if they are asked to pay additional visits exclusively for the sake of the study
102 and not during regular treatment visits.

103 10. Follow-up visits may be required for a very limited number of discrepant patients to exclude
104 TB.

105 11. Leftover sputum samples and deposits should be stored for resolving discrepancies. One
106 positive culture and two DNA samples per patient should be stored at -80°C for use later.

107 12. All the sites should follow up with all study participants till the final diagnosis is made and
108 the patient should be initiated on appropriate treatment as per NTEP norms. Those found to
109 be *M. tuberculosis* complex (MTB) positive by standard NAAT test should be started on
110 anti-tuberculosis treatment (ATT) by medical officer of the study site as per NTEP
111 guidelines.

112 13. The findings of the study should be made accessible through reports.

113
114
115
116

117 **V. Blinding of Laboratory Staff**

118 To ensure rigor of the evaluation process, laboratory staff performing the evaluation should be
119 blinded to the status of the clinical samples. The PI of the evaluation exercise should remain
120 unblinded, i.e., privy to the status of the samples. Another senior laboratory staff selected by the
121 PI may remain unblinded and carry out coding of samples and dispensing them into similar-
122 looking vials to be used for testing, and maintaining the database of results.

123

124 Staff performing the reference test and the test under evaluation (index test), interpretation of the
125 test result, and entering the results against the coded samples in the database, should remain
126 blinded to the status of samples till the completion of evaluation.

127

128 Operators conducting routine laboratory tests (smear, Xpert MTB/RIF, MGIT culture etc) will
129 not participate in the index test evaluation. Instead, dedicated operators, who are not involved in
130 routine testing and are blinded to the routine test results, will perform the index test. The results
131 will be recorded independently for each test without any patient identifiers. The result sheets will
132 be shared with the investigator for result analysis. The data should be analyzed only by the PI of
133 the evaluating lab (Fig. 1).

134

135

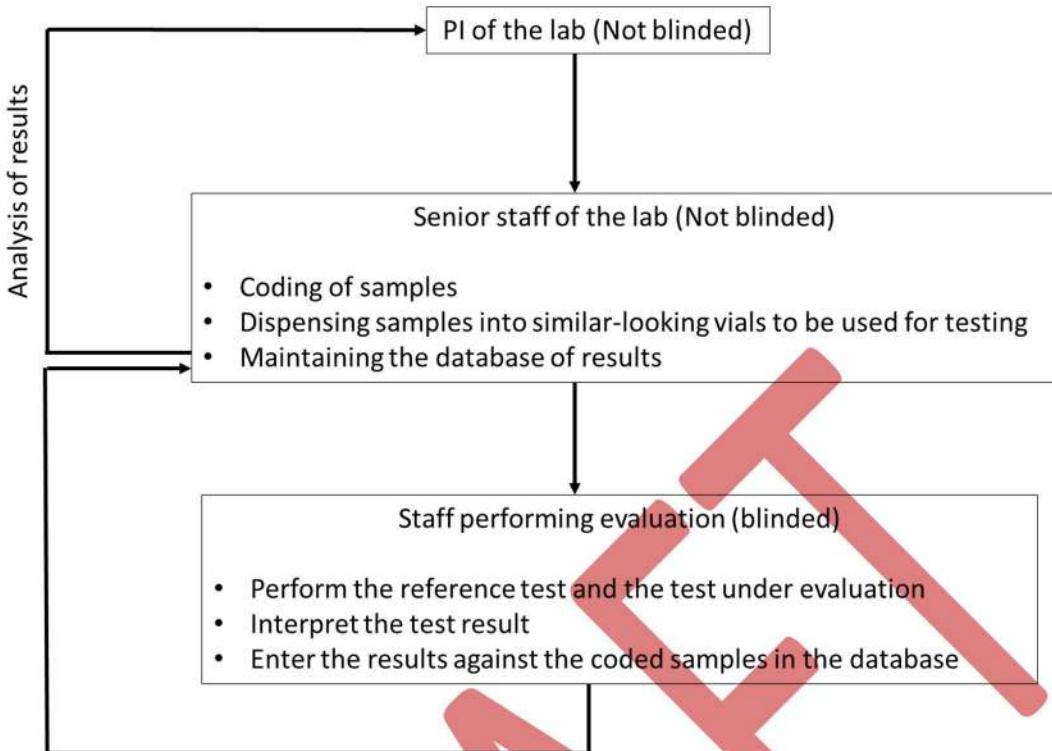


Figure 1 Blinding in evaluation exercise

VI. Procedure

1. Preparation of Evaluation sites/laboratories

- Laboratory must be approved by the National TB Elimination Program (NTEP).
- Accreditation for at least one Quality management system [accreditation for Testing Lab / Calibration Lab (ISO/IES 17025), Medical Lab (ISO 15189), PT provider ISO/IEC 17043 or CDSCO approved Reference laboratory].
- Three or more sites from different geographical regions should perform clinical validation for representation of population in real world setting.

2. Study Participants

Individuals with symptoms of presumptive pulmonary TB attending hospital OPDs/Chest clinics/district microscopy centers (DMCs) and Directly Observed Therapy Short Course (DOTS) centers. All such consecutive cases willing to provide consent will be enrolled in the study.

Definition of Presumptive PTB:

Patients with any of the following symptoms regardless of duration will be considered to have 'presumptive TB': cough for two weeks or more, fever for two weeks or more, night sweats, unintentional weight loss, hemoptysis, chest pain or loss of appetite, with any abnormality in chest radiograph (one or more of the following findings by standardized interpretative criteria: cavitary lesion(s), apical infiltrates, hilar lymphadenopathy, new infiltrates and other suggestive radiological findings).

155

156

157 **3. Eligibility of Participants**

158 **Inclusion Criteria**

- 159 1. Individuals positive for TB by smear or any approved NAAT test (Xpert® MTB/RIF)
- 160 2. Individuals willing to give consent
- 161 3. Individuals who are able and willing to give two good quality mucopurulent sputum samples of ≥ 3 ml

162 **Exclusion criteria**

- 164 1. Individuals on TB treatment for >96 hrs
- 165 2. Individuals not consenting for the study
- 166 3. Individuals unable to produce two sputum samples of ≥ 3 ml

167

168 **4. Reference and Index tests**

169 **Reference test:** Mycobacterium Growth Indicator Tubes (MGIT) liquid culture

170 **Comparator:** NTEP approved NAAT test (Xpert® MTB/RIF)

171

172 **5. Sample size**

173 The anticipated sensitivity of an index test is 90 % and with absolute 5 % precision, while the anticipated specificity is 99 per cent with 1 % precision. A higher precision for specificity would be required to minimize false positivity. The minimum sample size requirement has been calculated as ~ 150 positives and ~ 470 negatives for MTB by the gold standard culture. 174 With a prevalence of 24 % culture positives among presumptive cases in hospital setting (Penn-Nicholson et al., 2021) and a 5 % loss due to indeterminate results, approximately 610 consecutive cases meeting the inclusion and exclusion criteria would be required to be 175 enrolled for the detection of MTB (Jayaprakasam et al., 2024). Enrolment would be continued 176 till the required number of participants is covered.

177

178

179

180

181

182

183 The formula for calculating sample size for determining sensitivity/specificity of the index test:

184

$$185 N_{Se} = \frac{[Z(1-\alpha/2)]^2 * (Se)*(1-Se)}{d^2}$$

187 or

188

$$189 N_{Sp} = \frac{[Z(1-\alpha/2)]^2 * (Sp)*(1-Sp)}{d^2}$$

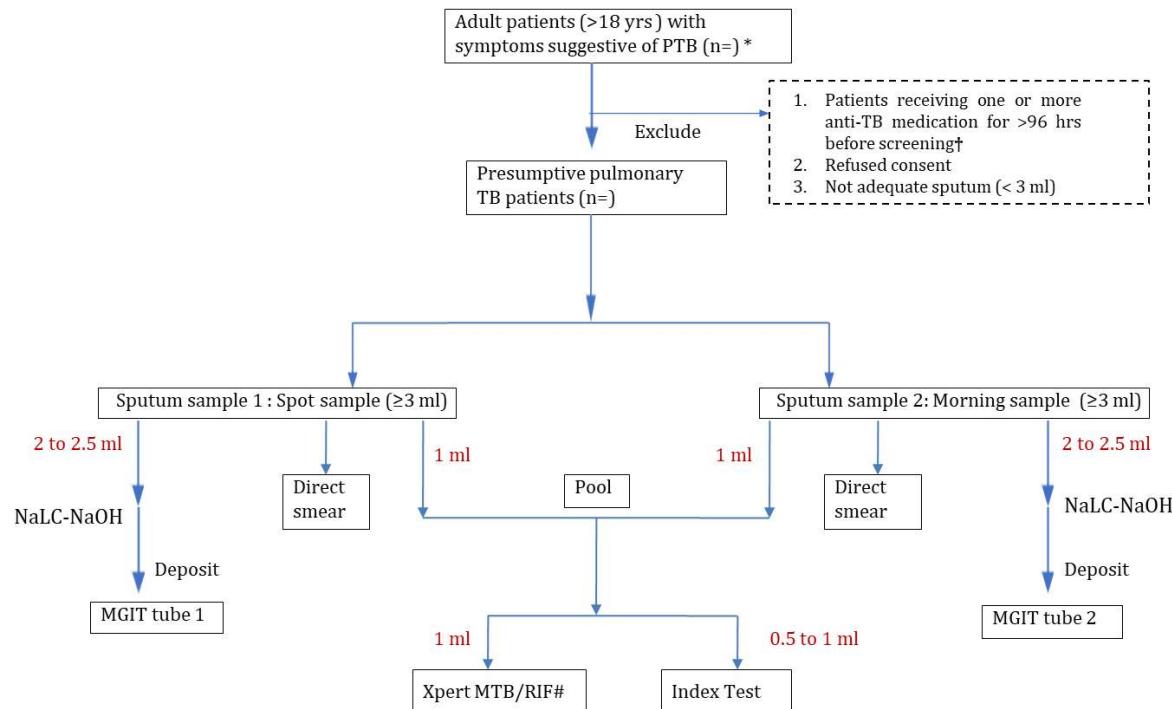
191 *N_{Se}: Sample size for estimating sensitivity,*

192 *Se: Anticipated sensitivity with reference to culture DST*

193 *Sp: Anticipated specificity with reference to culture DST*

194 *Z (1- $\alpha/2$): 1.96 for confidence level of 95%*

195 *d: Absolute precision*


196

197

DRAFT

198 **6. Implementation Plan**

199

* **Screening:** Medical history & clinical examination as per NTEP guidelines

† To ensure that dead bacilli are not detected and no treatment failure cases are enrolled

Comparator: Xpert MTB/RIF

Storage: One positive culture and 2 decontaminated samples per patient stored at -80°C for later use. Two DNA samples stored at -20°C for resolution of discrepant results.

200

201

202 **Figure 2 Flowchart for evaluating NAAT test for detection of Mycobacterium**
203 **Tuberculosis (MTB) among individuals with presumptive pulmonary TB (PTB)**

204

205

206

207 **7. Sample collection, processing and storage**
208

209 1. Two sputum samples each of minimum 3 ml should be collected (one spot and one morning
210 specimen) and sent to laboratory.
211 2. Approximately 1 ml of sample should be taken from each sample and pooled under sterile
212 conditions (total of 2 ml).
213 3. Around 1 ml of pooled sample should be tested by the standard NAAT (Xpert MTB/RIF[®])
214 and remaining sample used for index test(s).
215 4. The remaining portion of each sputum sample should be subjected to direct smear and
216 decontamination by NaLC-NaOH method individually.
217 5. The resultant deposit should be used for inoculation into two MGIT960 tubes.
218 6. All positive cultures should be identified using rapid Immuno-chromatography test (ICT).
219 (Ideally, positive MGIT tubes are tested within 5 days of instrument positivity. Interpretation
220 of the result should be done within 15 minutes).
221 7. All sputum samples should be stored at -20°C for later use. Decontaminated sediments and
222 one positive culture per patient should be stored at -80°C, if necessary for later use.
223 8. Two DNA samples per patient should be stored at -20°C till the end of the study for
224 resolution of discrepant results.
225 9. The index tests should be carried out as per the algorithm (figure 2) and as per the
226 manufacturers' instructions in the instructions for use (IFU).

227 ~~SP~~
228 All conventional test procedures for smear, culture (solid and liquid) and Xpert MTB will be
229 performed as per NTEP national laboratory guidelines (CTD, 2016; RNTCP 2009) and laboratory
230 manual of ICMR-NIRT (NIRT, 2010). Standard operating procedures for index test(s) will be
231 provided by the manufacturer(s) including use of positive and negative controls. All procedures
232 for preparation of media, reagents, washing, decontamination, disposal and storage will be
233 performed according to the standard operating procedures (SOP) of ICMR-NIRT (NIRT, 2010)
234 and WHO, (WHO, 2022).

235
236
237
238
239
240

241 **8. Laboratory Tests**

242

243 i. Smear microscopy: Two direct sputum smear

244 ii. MGIT culture (decontaminated with 1-1.5% final NaOH); Two MGIT tubes (one per

245 specimen) for each patient

246 iii. Speciation of culture: Rapid immunochromatographic test (ICT) of MGIT culture

247 iv. Xpert MTB/RIF (one test per patient)

248

249 **9. Data Analysis and resolution of discrepancy**

250 i. If the index test produces error or indeterminate results, then only one repeat is allowed.

251 The results of first test and repeat test should be recorded separately.

252 ii. All Invalids/Indeterminates/errors should be recorded and reported.

253 iii. A subgroup analysis may be carried out for pediatric population.

254

255 **10. Quality Control (QC) measures**

256 All sites should ensure high quality of laboratory procedures, data recording and

257 documentation. There should be no deviation from the protocol. All the sites should

258 participate in internal quality control (IQC) and external quality assurance (EQA) for all

259 methods as per the standard manuals of Global Laboratory Initiative (GLI, 2014).

260 **Culture:** Positive (Reference strain H37Rv or H37Ra) and negative controls for MGIT and

261 LJ cultures would be tested as per NTEP guidelines. MGIT Time to detection QC for MTB

262 reference strain would be performed every month/new lot of reagents/machine service.

263 Sterility and performance testing of culture media would be performed with every new batch

264 or lot.

265 **Smear:** Smear QC should be performed as per NTEP guidelines at regular intervals and with

266 new lot of reagents.

267 **ICT Identification of MTB complex:** Culture of *M. tuberculosis* reference strain in MGIT

268 broth should be used as positive control. Culture of Mycobacteria other than tuberculosis

269 (e.g., a well characterized strain of *M. avium* complex/*M. kansasii*) in MGIT broth should be

270 used as negative control. QC for ICT should be performed every 3 months.

271 **Molecular diagnostics:** For molecular diagnostics internal quality control includes control

272 supplied by the manufacturer and control prepared by the lab from the previous testing. The

273 internal control should be used whenever batch of test kit changes, machine is serviced, and
274 newly trained person is introduced into the system.

275 ***Avoiding Cross-contamination:*** Unidirectional workflow: The workflow of a molecular lab
276 should be in one direction only. PCR master mix reagents and samples that may contain
277 templates for PCR should be prepared in the pre-PCR room only. Tubes that have undergone
278 amplification in the post-PCR room contain amplicons and will not be opened or introduced
279 in the pre-PCR room. Consumables and PPE (lab coats, gloves, goggles, etc.) that have been
280 used in the post-PCR room should not be placed back in the pre-PCR room without thorough
281 decontamination. Aerosol resistant pipettes will be used for all procedures and standard
282 aseptic cleaning technique should be carried out before and after PCR for work surface, bench
283 top and equipment.

284

285 **VII. Statistical Analysis Plan**

286

287 i. The performance of the diagnostic kits should be evaluated by calculating the sensitivity,
288 specificity, positive predictive value, negative predictive value and accuracy with reference
289 to the gold standard. 95% Confidence interval should be calculated for each of the
290 parameters.

291 ii. The index molecular test should be evaluated for its performance with reference to the
292 MGIT culture.

293 iii. Similarly, the performance of standard molecular test (Xpert MTB/RIF) should be estimated
294 with reference to MGIT culture.

295 iv. The sensitivity and specificity of index test vs MGIT culture should be compared with that
296 of Xpert® MTB/RIF Vs MGIT culture.

297 v. The agreement between the index test and standard NAAT test (Xpert MTB/RIF) should be
298 calculated with kappa statistic.

299

300 **VIII. Acceptance Criteria**

301 Expected sensitivity: $\geq 85 \pm 2\%$

302 Expected specificity: $\geq 95 \pm 2\%$

303 Sample size: ~150 MTB positives and ~470 MTB negatives by MGIT culture

304

305 **IMPORTANT NOTE**

306 After following due procedure as defined in this document, once any kit is found to be Not
307 of Standard Quality, thereafter, no request for repeat testing of the same kit will be
308 acceptable.

309

310 Any request of re-validation from the same manufacturer for the same test type will only
311 be entertained after a minimum of 3 months and only if a high-level technical summary of
312 modifications or functional improvements to the kit design is submitted, without explicit
313 disclosure of proprietary information.

314

315 Clinical samples are precious, therefore, repeat evaluation of a kit using the same/ different
316 well-characterized sample panel at a different laboratory may be considered only for kits
317 which claim high performance characteristics (sensitivity and specificity 95% and above),
318 but which fail the performance evaluation by a margin of 5%.

319

320 **References**

1. Penn-Nicholson, A., Gomathi, S. N., Ugarte-Gil, C., Meaza, A., Lavu, E., Patel, P., Choudhury, B., Rodrigues, C., Chadha, S., Kazi, M., Macé, A., Nabeta, P., Boehme, C., Gangakhedkar, R. R., Sarin, S., Tesfaye, E., Gotuzzo, E., du Cros, P., Tripathy, S., Ruhwald, M., ... Members of the Truenat Trial Consortium: (2021). A prospective multicentre diagnostic accuracy study for the Truenat tuberculosis assays. *The European respiratory journal*, 58(5), 2100526.
2. Jayaprakasam, M., Pandey, R. M., Choudhary, H., Shanmugam, S., Sivaramakrishnan, G. N., & Gupta, N. (2024). Evaluation of molecular diagnostic test for detection of adult pulmonary tuberculosis: A generic protocol. *The Indian journal of medical research*, 159(2), 246–253.
3. Technical and operational guidelines for tuberculosis control in India 2016. Central TB Division.
4. RNTCP Standard Operating Procedures for Tuberculosis lab for culture and DST, 2009.
5. Standard Operating Procedures (SOP) for Mycobacteriology laboratory, ICMR-NIRT, 2010.
6. Practical manual on tuberculosis laboratory strengthening, 2022 update. Geneva: World Health Organization; 2022. Licence: CC BY-NC-SA 3.0 IGO.
7. Mycobacteriology laboratory manual, Global laboratory initiative, First edition, April 2014, Stop TB Partnership.

339

340
341
342
343

PERFORMANCE EVALUATION REPORT FORMAT

Performance Evaluation Report For MTB Kit

Name of the product (Brand/generic)	
Name and address of the legal manufacturer	
Name and address of the actual manufacturing site	
Name and address of the Importer	
Name of supplier: Manufacturer/Importer/Port office of CDSO/State licensing Authority	
Lot No /Batch No.:	
Product Reference No/Catalogue No	
Type of Assay	
Kit components	
Manufacturing Date	
Expiry Date	
Pack size (Number of tests per kit)	
Intended Use	
Number of Tests Received	
Regulatory Approval:	
Import license / Manufacturing license/ Test license	
License Number:	
Issue date:	
Valid Upto:	
Application No.	
Sample	Sample type
Panel	Positive samples (provide details: strong, moderate, weak)
	Negative samples (provide detail: clinical/spiked, including cross reactivity panel)

344

345 Results:

346

Test	Number of samples tested	Positive	Negative	Invalids/ Indeterminates/Error/ Contamination (culture)
Smear				
MGIT culture				
Xpert MTB/RIF				
New MTB kit				

347

348

		Reference assay (MGIT culture)		
		Positive	Negative	Total
Name of MTB kit	Positive			
	Negative			
	Total			

349

	Estimate (%)	95% CI
Sensitivity		
Specificity		

350

351

352

353 Conclusions:

354

355

- Sensitivity, specificity
- Performance: **Satisfactory / Not satisfactory**

357

(Sensitivity and specificity have been assessed in controlled lab setting using kits provided by the manufacturer from the batch mentioned above using sample. Results should not be extrapolated to other sample types.)

358

359 DISCLAIMERS

360

361

1. This validation process does not approve / disapprove the kit design
2. This validation process does not certify user friendliness of the kit / assay

362

Note: This report is exclusively forKit (Lot No.....), versionwith the gene targetsmanufactured by(Supplied by).

363

Evaluation Done on

364

Evaluation Done by

365

Signature of Director/ Director-In-charge Seal

366

*****End of the Report*****

367

368

369

370

381